

Differentiation: Extending Maths to all.

Andrea O'Connor

• To discuss the what, how and why of differentiation in the mathematics classroom.

Learning for today.

- To discuss the what, how and why of differentiation in the mathematics classroom.
- To provide examples of differentiated mathematics learning tasks which are low floor/ high ceiling and embed enabling and extending prompts.

Learning for today.

- To discuss the what, how and why of differentiation in the mathematics classroom.
- To provide examples of differentiated mathematics learning tasks which are low floor/ high ceiling and embed enabling and extending prompts.
- To enjoy rich colleagial discussion, sharing our own knowledge, understanding and experiences of differentiation.

• Using the Golden Circle model discuss the WHAT , the HOW and the WHY of differentiation in your classroom.

Sinek, 2016.

What would you see in a classroom with effective differentiation?

https://www.mentimeter.com/app/presentation/e4fa6d9989811c4ab c13c0528bbd8d3a/7a8a972e81b6/edit

- WHAT?
- The way of describing the efforts of teachers that attempt to meet the variation on student learning needs.

Differentiation.

- WHAT?
- The way of describing the efforts of teachers that attempt to meet the variation on student learning needs.
- HOW?
- A teacher is differentiating learning when teaching is adapted or modified by providing rich learning tasks which have a high floor/low ceiling and include enabling/extending prompts.

Differentiation.

- WHAT?
- The way of describing the efforts of teachers that attempt to meet the variation on student learning needs.

• HOW?

- A teacher is differentiating learning when teaching is adapted or modified by providing rich learning tasks which have a high floor/low ceiling and include enabling/extending prompts.
- WHY?
- To ensure optimal learning experiences are provided to all students.

"There are no rules for differentiating learning, but rather, it is a way of thinking about teaching and learning in the classroom".

Tomlinson, C., 2000; 2004.

• If closed tasks are provided to heterogenous student groups, many will fail or not be challenged.

- If closed tasks are provided to heterogenous student groups, many will fail or not be challenged.
- It's **imperative** that tasks have a low floor and high ceiling to allow all students to access ideas and take them to very high levels.

- If closed tasks are provided to heterogenous student groups, many will fail or not be challenged.
- It's **imperative** that tasks have a low floor and high ceiling to allow all students to access ideas and take them to very high levels.
- Open-ended maths tasks are the most engaging, interesting and provide an opportunity for creativity.

- If closed tasks are provided to heterogenous student groups, many will fail or not be challenged.
- It's **imperative** that tasks have a low floor and high ceiling to allow all students to access ideas and take them to very high levels.
- Open-ended maths tasks are the most engaging, interesting and provide an opportunity for creativity.
- They provide teachers opportunities to challenge, support and stretch students at the right level.

• Be informed by your data both formative and summative.

- Be informed by your data both formative and summative.
- Select rich learning tasks with a low floor/high ceiling.

- Be informed by your data both formative and summative.
- Select rich learning tasks with a low floor/high ceiling.
- Include variations on the original task.

- Be informed by your data both formative and summative.
- Select rich learning tasks with a low floor/high ceiling.
- Include variations on the original task.
- Enabling prompts involve slight variations to the demand of the original task, this ensures access to original task when the learner is ready to move forward.

- Be **informed by your data** both formative and summative.
- Select rich learning tasks with a low floor/high ceiling.
- Include variations on the original task.
- Enabling prompts involve slight variations to the demand of the original task, this ensures access to original task when the learner is ready to move forward.
- Extending prompts are for those learners who have completed the main task, the prompts should encourage depth, abstraction and generalisation.

(Downton, 2022)

Examples of Enabling Prompts

- Change the representation.
- Simplify the numbers.
- Pose a simpler or similar problem with fewer variables or fewer steps.
- Make the tasks more concrete.

Examples of Extending Prompts

- Change the representation of results.
- Make the numbers more complex.
- Change the number of steps.
- Reason and justify your mathematical thinking.
- Questioning: What if the numbers were different?
- Create your own model/question/problem.

Seeing numbers inside Numbers.

Differentiation planning sheet: Counting Yr F. (Mindset Mathematics K, 2020)

Key mathematical	Task	Enabling prompt	Extending prompt	Consolidating Task
understandings				
	Launch:	Provide counters for	Ask students to create	Students create their
Students use visual	Whole group: (Modelling the Task)	students to cover, count	their own cards to add	own set of cards to play
and counting	Show students the Two Sets and ask "Which group has	and compare the dots	to the set.	"Which is More" using
strategies to	more".			laminated squares.
compare groups of	Ask the students to think then turn and talk. Students share	They can then put their	Provide more complex	
dots in a game of	their thinking.	counters in a line to	representation.	
"Which Is More".	How could we prove which group has more dots?	count and determine		
		which side has more.		
	Ask students to share strategies.			
		Give simple		
	Explore:	representation.,		
	In pairs:			
	Students play Which is More? Using the card decks. Partners			
	make predictions visually about which group has more dots			
	and then develop strategies to prove which has more.			
	Discuss:			
	Share how students could tell visually which had more dots			
	and the strategies developed for proving which group had			
	more.			

Ways to enable	Ways to extend	
 Change the representation Make the numbers less complex Concrete materials 	 Change the representation Make the numbers more complex Change the number of steps Convince me Create your own 	

(A Downton, 2022)

Key

How many ways can you see 7 dots.

Place-Value Skip Counting

Differentiation planning sheet: Place Value Skip Counting Yr 2. (ReSolve Y2)

Key mathematical	Task	Enabling prompt	Extending prompt	Consolidating Task
understandings				
	Whole group: (Modelling the Task)	Students can be	Provide bundles of	Students count more
To explore the	The teacher uses a set of cards with 1, 10 and 100 printed	provided with 1s and	cards where renaming is	than ten cards each of
multiplicative	on them and asks students to skip count according to the	10s before including	required.	100s, 10s and 1s. When
place-value	number printed on the card. The cards are shuffled and	100s.	For example:	exploring the place
properties of	again skip counted according to the number on the card.		664= (5 x 100) + (15 x	value of the number,
numbers. Students	Students are asked to consider why they reach the same	Concrete materials	10) + (14 X 1)	the cards no longer
learn to represent	total when the cards are presented in a different order.	(MAB) can be used to		neatly represent the
numbers up to 1000		keep the count.	Students can be	place value parts.
as multiples of 100s,	In pairs:		provided with 1000s or	Students are asked to
10s and 1s. For	Students then explore the relationship between the cards	Whiteboards can be	0.1s.	regroup; that is, group
example, 664 = (6 ×	and the place-value property of the final number in the	used to keep track of		ten 10s together to
100) + (6 × 10) + (4 ×	count.	counting.	Students check for	form one 100 or ten 1s
1).			accuracy:	together to form one
			By skip counting	10.
			backwards.	
			Would we expect to	
			finish on zero?	

Ways to enable	Ways to extend	
 Change the representation Make the numbers more complex Pose a simpler or similar problem with fewer variables or fewer steps 	 Change the representation Make the numbers more complex Change the number of steps Convince me What if the numbers were different Create your own 	

(A Downton, 2022)

Geometric Art-Using Equivalent Fractions

Differentiation planning sheet: Picking paintings Apart- L5 (Mindset Mathematics, Jo Boaler)

Key mathematical	Task	Enabling prompt	Extending prompt	Consolidating Task
understandings				
To explore colours in geometric art, to build understanding of fraction equivalence to visualise the need for common denominators when adding and subtracting fractions.	Using geometric art, develop ways of finding the fraction of the area of a painting covered by two or more colours. Discuss the methods students used for joining fractions represented in different colours. Name the reason for using the same size pieces (a common denominator) when joining.	Provide more simple geometric art pieces requiring a fewer number of colours to be added. (Stacks). Provide explicit instruction at the point of need.	Provide more complex geometric art pieces requiring a greater number of colours to be added. (Patches)	Building on student understanding of adding and subtracting fractions in geometric art, students create 'good' and 'close' fake Mondrial paintings, which when 3 colours are added are close to a half (but not exactly). Students are required to justify why their paintings are a 'close' flake.

Ways to enable	Ways to extend	
 Change the representation Make the numbers more complex Pose a simpler or similar problem with fewer variables or fewer steps 	 Change the representation Make the numbers more complex Change the number of steps Convince me What if the numbers were different Create your own 	

(A Downton, 2022)

What fraction of the painting is purple and green?

What fraction of the painting is yellow and orange?

What fraction of the painting is red, blue, and yellow?

Assessment Ideas-Exit Ticket

- Students are able to reflect on their learning using a clear criteria.
- Provides teacher an instant feedback on where to next with learners.
- Boaler, 2016.

Appendix A

Exit Ticket

Exit Ticket		Name Date	
Three things I learned today	earned Two things I found interesting	One question I have	

•••••

Peer Assessment-2 Stars & a wish

 Peers are able to provide feedback either with or without criteria, to select 2 things they've done well and 1 area to improve.

Boaler, 2016.

Group Reflection-Big Ideas

• An effective way for students to become knowledgable about the ideas they are learning is to provide reflection time at the end of lessons.

(Boaler, 2016)

Appendix / 251 Reflection What was the big idea we worked on today? What did I learn today? What good ideas did I have today? In what situations could I use the knowledge I learned today? What questions do I have about today's work? What new ideas do I have that this lesson made me think about?

Learn more at www.mav.vic.edu.au

